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Abstract Class A scavenger receptors (SR-A) mediate the
uptake of modified low density lipoprotein (LDL) by mac-
rophages. Although not typically associated with the activa-
tion of intracellular signaling cascades, results with perito-
neal macrophages indicate that the SR-A ligand acetylated
LDL (AcLDL) promotes activation of cytosolic kinases and
phospholipases. These signaling responses were blocked by
the treatment of cells with pertussis toxin (PTX) indicating
that SR-A activates G

 

i/o

 

-linked signaling pathways. The func-
tional significance of SR-A-mediated G

 

i/o

 

 activation is not
clear. In this study, we investigated the potential role of G

 

i/o

 

activation in regulating SR-A-mediated lipoprotein uptake.
Treatment of mouse peritoneal macrophages with PTX de-
creased association of fluorescently labeled AcLDL with
cells. This inhibition was dependent on the catalytic activity
of the toxin confirming that the decrease in AcLDL uptake
involved inhibiting G

 

i/o

 

 activation. In contrast to the inhibi-
tory effect on AcLDL uptake, PTX treatment did not alter

 

b

 

-VLDL-induced cholesterol esterification or deposition of
cholesterol. The ability of polyinosine to completely inhibit
AcLDL uptake, and the lack of PTX effect on 

 

b

 

-VLDL up-
take, demonstrated that the inhibitory effect is specific for
SR-A and not the result of non-specific effects on lipoprotein
metabolism. Despite having an effect on an SR-A-mediated
lipoprotein uptake, there was no change in the relative
abundance of SR-A protein after PTX treatment.  These
results demonstrate that activation of a PTX-sensitive G
protein is involved in a feedback process that positively reg-

 

ulates SR-A function.

 

—Whitman, S. C., A. Daugherty, and S. R.
Post.
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An early step in the formation of atherosclerotic lesions
is the accumulation of modified low density lipoprotein
(LDL), formed by oxidation of both the protein and lipid
components of LDL in the arterial wall (1–4). Modified
LDL is taken up by macrophages via interaction with class
A scavenger receptors (SR-A). Chemically modified forms
of LDL, such as acetylated LDL (AcLDL), bind to SR-A
with high affinity and are commonly used to assess the

 

function of this receptor (5). In macrophages, the uptake
of AcLDL via SR-A results in excessive cholesteryl ester ac-
cumulation and leads to lipid engorgement as characteris-
tically seen in atherosclerotic lesions (6). The role of SR-A
in mediating macrophage cholesteryl ester accumulation
during incubation with AcLDL is demonstrated by the
80% reduction in esterification in SR-A-deficient mice (7).
Moreover, SR-A deficiency decreases lesion development
in atherosclerosis-susceptible mice (8, 9). While it seems
clear that SR-A is a key component in the development
and progression of atherosclerotic lesions, the molecular
mechanisms by which SR-A function is regulated are not
well understood.

Lipoprotein receptors are primarily thought to func-
tion in cholesterol transport and are not typically associ-
ated with transmembrane signaling processes. However,
recent evidence indicates that specific lipoproteins, in
particular modified LDL, activate intracellular signaling
cascades (10–12). For example, incubation of human
monocyte/macrophage cells with AcLDL results in the ac-
tivation of tyrosine kinases and protein kinase C (10). Re-
sults from other studies in isolated peritoneal macro-
phages indicate that AcLDL increases intracellular Ca

 

2

 

1

 

and promotes the activation of cytosolic tyrosine kinases
and phospholipases (12). In these studies, signal propaga-
tion was blocked by the treatment of cells with pertussis
toxin (PTX), a highly specific inhibitor of heterotrimeric
GTP binding proteins (G proteins) of the G

 

i/o

 

 family (13).
Together, these results demonstrate a link between scaven-
ger receptors and activation of PTX-sensitive G proteins.

Although AcLDL interacts with SR-A to activate G pro-
teins, no functional consequences have been attributed to
this process. The results of the present study define the
impact of G

 

i/o

 

 activation on lipoprotein uptake. Overall,
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b
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our results indicate that a feedback process involving
ligand-dependent activation of a PTX-sensitive G protein
positively regulates SR-A function.

EXPERIMENTAL PROCEDURES

 

Chemicals

 

DMEM medium with 

 

l

 

-glutamine and high glucose and heat-
inactivated fetal bovine serum (FBS) were purchased from
Gibco-BRL (Grand Island, NY). Pertussis toxin and the isolated
toxin B-oligomer were from Calbiochem (La Jolla, CA). Guinea
pig polyclonal anti-SR-A sera (Mac 5.2) was a generous gift from
Joseph Witztum (UCSD, CA) and rat monoclonal anti-SR-A anti-
body (2F8) was purchased from Serotec (Raleigh, NC). The
monoclonal anti-

 

b

 

 actin antibody was obtained from Sigma (St.
Louis, MO). 1,1

 

9

 

-Dioctadecyl-3,3,3

 

9

 

,3

 

9

 

-tetramethyl indocarbocya-
nine perchlorate-labeled AcLDL (DiI-AcLDL) was purchased
from Biomedical Technologies Inc. (Stoughton, MA). Assay kits
for determination of total and unesterified cholesterol were pur-
chased from Wako Pure Chemical (Richmond, TX).

 

Lipoprotein isolation and acetylation

 

LDL (d 1.019–1.063 g/ml) was isolated by sequential ultra-
centrifugation (14) of EDTA-anticoagulated plasma obtained
from healthy normolipidemic volunteers. LDL was dialyzed
against 0.15 

 

m

 

 NaCl and 1 m

 

m

 

 EDTA (pH 7.4). Acetylated LDL
(AcLDL) was prepared by chemical modification of LDL with
acetic anhydride as described by Basu et al. (15) and confirmed
by agarose gel electrophoresis and comparison to unmodified
LDL. Beta-migrating VLDL (

 

b

 

-VLDL; d 

 

,

 

 1.006 g/ml) was iso-
lated by sequential ultracentrifugation of EDTA-anticoagulated
plasma obtained from New Zealand White rabbits maintained
on a 1.0% cholesterol-enriched diet (16). Lipoprotein prepara-
tions were sterilized by passage through 0.22-

 

m

 

m filters and
stored at 4

 

8

 

C. Lipoprotein samples were analyzed for protein
content by the method of Lowry et al. (17).

 

Cell culture

 

Resident peritoneal macrophages were collected from 6–8-
week-old male outbred Cr:NIH (S) Swiss mice (NCI Charles
River) by peritoneal lavage with 5 ml ice-cold sterile saline. Cells
were resuspended in DMEM containing penicillin/streptomycin
and 10% FBS and plated at a density of 1 

 

3

 

 10

 

6

 

 cells/ml. After
overnight incubation at 37 

 

8

 

C, non-adherent cells were removed
by gently washing cells three times with serum-free DMEM. Ad-
herent macrophages were then cultured in medium with FBS for
24 h prior to experimentation.

 

DiI-AcLDL association assays

 

Association of DiI-AcLDL was used to assess the effect of PTX
treatment on modified lipoprotein uptake. Isolated peritoneal
macrophages were treated with the indicated concentrations of
PTX (A

 

1

 

B subunits) or the toxin’s binding domain (B-oligomer)
in DMEM plus FBS for 24 h. Cells were then washed, fluorescent
lipoprotein (DiI-AcLDL, 5 

 

m

 

g/ml) was added, and incubations
were continued for 2 h in serum-free DMEM. Unbound ligand
was removed by washing twice with ice-cold phosphate-buffered
saline (PBS, pH 7.4) and cells were fixed by incubating with
paraformaldehyde (4% in PBS, pH 7.4) for 15 min on ice. Cells
were scraped into PBS and cell-associated fluorescence was de-
termined by fluorescence-activated cell sorting (FACS) analysis.
Data are expressed as the percent of cells displaying a fluores-
cent intensity within the peak defined by DiI-AcLDL association
with untreated cells.

 

Cholesterol esterification assays

 

The incorporation of [

 

3

 

H]oleic acid into cholesteryl esters
was used as a measure of macrophage-mediated metabolism of
lipoproteins. Isolated peritoneal macrophages were treated with
PTX in DMEM plus FBS for 24 h. Cells were then washed, lipo-
proteins (

 

b

 

-VLDL or AcLDL) were added, and incubations were
continued for 5 h in serum-free DMEM containing 0.9 

 

m

 

Ci
[

 

3

 

H]oleic acid (Amersham, Piscataway, NJ) complexed with
fatty acid-free BSA in a molar ratio of 5:1. The cells were washed
twice with ice-cold Tris buffer (pH 7.4) and lipids were ex-
tracted by two 30-min incubations with 1 ml hexane–
isopropanol 3:2 (vol/vol) containing carrier lipid (triolein and
cholesterol palmitate). Cell proteins were solubilized in 0.5 ml
0.1 N NaOH for 16 h at room temperature and protein content
was determined using the Bio-Rad Protein Assay (Bio-Rad Labo-
ratories, Hercules, CA) with BSA as a standard. The lipid ex-
tracts were dried under nitrogen, resuspended in chloroform–
methanol 2:1 (vol/vol), and resolved by thin-layer chromatog-
raphy with petroleum ether–diethyl ether–acetic acid 84:15:1
(vol/vol/vol). Esterified cholesterol was identified by exposure
to iodide vapor, scraped into EcoLite (ICN, Costa Mesa, CA),
and the amount of cholesteryl [

 

3

 

H]oleate was quantified by liq-
uid scintillation counting using a Beckman LS 3801 counter.
Results are expressed as nanomoles of cholesteryl [

 

3

 

H]oleate
formed/milligram of cell protein.

 

Cholesterol mass assays

 

For determination of cholesterol mass, adherent macro-
phages were treated (or untreated) with PTX for 24 h, washed
with serum-free DMEM, and incubated for an additional 16 h
with the indicated lipoproteins and PTX (treated cells) in
DMEM supplemented with 5% lipoprotein-deficient serum.
Cells were washed with ice-cold Tris buffer (pH 7.4) and lipid
was extracted as described above using hexane–isopropanol
without carrier lipid (18). Cell proteins were solubilized in 0.5
ml 0.1 N NaOH for 16 h at room temperature and protein con-
tent was determined as described above. Cholesterol and cho-
lesteryl ester content in the lipid extracts were determined as
described previously (19). Briefly, the extracted lipid was solubi-
lized in Triton X-100 containing chloroform and converted to
an aqueous suspension. Aliquots were transferred to 96-well mi-
crotiter plates and cholesterol and cholesteryl ester content was
determined using commercial enzyme-based assay kits. Results
are expressed as micrograms of cholesterol/milligram of cell
protein.

 

Detection of SR-A protein

 

For determination of SR-A protein expression, peritoneal mac-
rophages were incubated with or without PTX (100 ng/ml) for
24 h. Incubation medium was removed, cell lysates were pre-
pared in reducing Laemmli buffer, proteins were resolved by
12% SDS-PAGE, and proteins were transferred to PVDF. Blots
were probed sequentially with anti-SR-A sera (Mac 5.2) and anti-

 

b

 

-actin antibody followed by incubation with species-specific
HRP-coupled secondary antibodies. Blots were incubated with
chemiluminescence substrate (Supersignal; Pierce, Rockford, IL)
and luminescent bands were detected using a Kodak Image Sta-
tion 440.

 

Statistical analysis

 

For statistical analysis, data were analyzed by one-way ANOVA
using GraphPad Prism program. When a statistical difference
was indicated, results were analyzed with the appropriate post-
test. For cholesterol esterification and mass assays, results from
PTX-treated cells were compared to untreated cells using a Bon-
ferroni’s post-test.
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RESULTS

 

Pertussis toxin treatment decreases DiI-AcLDL
association with macrophages

 

As an initial approach to determine whether G

 

i/o

 

 pro-
teins regulate AcLDL interaction with SR-A, MPM were
isolated from NIH-Swiss mice and treated for 24 h with in-
creasing concentrations of either the PTX (A

 

1

 

B sub-
units) or the toxin-binding domain (B-oligomer). The
B-oligomer mediates cell association and facilitates entry of
the A-subunit into the cell. The A-subunit possesses the cat-
alytic activity required for ADP-ribosylation of 

 

a

 

-subunits of
heterotrimeric G

 

i/o

 

 proteins, a modification that prevents
receptor-mediated activation of the G protein (13). Cells
were incubated with the fluorescent SR-A ligand, DiI-
AcLDL, for 2 h at 37

 

8

 

C. Unbound ligand was removed by
repeated washing, cells were fixed with paraformalde-
hyde, and the amount of ligand associated with cells was
determined by FACS analysis. As shown in 

 

Fig. 1

 

, treatment
of macrophages with PTX (A

 

1

 

B subunits) substantially in-
hibited DiI-AcLDL association with MPM. This inhibitory
effect of PTX was maximal at a toxin concentration of 100
ng/ml (32 

 

6

 

 5%; n 

 

5

 

 10) with no further increase in inhi-
bition observed at concentrations as high as 500 ng/ml.
This concentration range is consistent with that shown
previously to specifically inhibit G

 

i/o

 

 function in intact
macrophages (20). Therefore, in all further experiments
PTX was used at a concentration of 100 ng/ml.

 

Decreased AcLDL association with PTX-treated
macrophages depends on inhibition of G

 

i/o

 

The dependence of this inhibitory effect on AcLDL up-
take on PTX-mediated ADP-ribosylation of the 

 

a

 

-subunits
of G

 

i/o

 

 proteins is demonstrated by the lack of effect of
the toxin’s B-oligomer. Although minimal (

 

,

 

10%) inhibi-
tion of DiI-AcLDL association was observed after incuba-

tion with high concentrations of the B-oligomer, this re-
sult is consistent with the presence of holotoxin (

 

<

 

1%) in
the B-oligomer preparation (as reported by the supplier).
These data support the conclusion that G

 

i/o

 

 activation is
important in regulating a significant component of
AcLDL uptake by macrophages.

 

Inhibition of G

 

i/o

 

 specifically decreases
AcLDL metabolism

 

To determine whether the decreased association of DiI-
AcLDL with PTX-treated macrophages reflected reduced
SR-A function, the effect of PTX treatment on the ability of
AcLDL to increase cholesteryl [

 

3

 

H]oleate accumulation was
quantified. Treatment of macrophages with PTX decreased
the incorporation of [

 

3

 

H]oleate into cholesteryl ester (

 

Fig.
2

 

) after incubation with AcLDL. In contrast to the inhibitory
effect on AcLDL metabolism, PTX treatment did not alter
cholesteryl [

 

3

 

H]oleate deposition in macrophages incu-
bated with 

 

b

 

-VLDL, a lipoprotein that stimulates cholesterol
esterification through an alternative receptor pathway. The
lack of a PTX effect on 

 

b

 

-VLDL metabolism indicates that
PTX treatment does not have a general inhibitory effect on
intracellular lipoprotein trafficking and processing.

Native and modified lipoproteins are thought to inter-
nalize via receptor-mediated endocytosis in clathrin-
coated pits and metabolized in lysosomes (21, 22). How-
ever, it has been suggested that AcLDL internalization by
SR-A involves multiple pathways (23, 24). To confirm that
the decreased AcLDL-induced cholesteryl ester deposi-
tion in PTX-treated macrophages reflected decreased
lipoprotein internalization and not enhanced uptake via a
pathway that did not involve lipoprotein metabolism in ly-
sosomes, lipoprotein-induced increases in cholesterol
mass were determined. PTX treatment decreased AcLDL-
induced increase in total cellular cholesterol mass, but did
not alter 

 

b

 

-VLDL-induced changes (

 

Fig. 3A

 

). The de-

Fig. 1. PTX reduces uptake of AcLDL in MPM via ADP-ribosylation
of Gi/o. The association of fluorescently labeled AcLDL (DiI-
AcLDL) was determined in MPM that were untreated or treated for
24 h with the indicated concentration of PTX holotoxin (closed cir-
cles) or the cell-binding domain (B-oligomer, open circles) prior to
incubation with DiI-AcLDL (5 mg/ml) for 2 h. The amount of fluo-
rescence associated with cells was determined by FACS analysis.

Fig. 2. PTX treatment inhibits AcLDL-, but not b-VLDL-induced
cholesterol esterification in MPM. Cholesterol esterification was de-
termined in MPM that were untreated or treated for 24 h with PTX
(100 ng/ml) prior to incubation with 50 mg/ml of b-VLDL or
AcLDL and a [3H]oleic acid–albumin complex for 5 h. Cellular es-
terified cholesterol was isolated by thin-layer chromatography and
cholesteryl [3H]oleate was quantified. Histograms and bars repre-
sent mean 6 SEM of at least three different experiments con-
ducted in triplicate.
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crease in cholesterol mass in PTX-treated cells resulted
from reduced cholesteryl ester content (Fig. 3B) and not
from a reduction in the mass of unesterified cholesterol
mass (Fig. 3C). Together, our results indicate that activa-
tion of G

 

i/o

 

 proteins is specifically involved in regulating
SR-A-mediated uptake. Further, our data indicate that
SR-A-mediated uptake of AcLDL involves two pathways:
one that is PTX-sensitive and the other PTX-insensitive.

 

G

 

i/o

 

 inhibition decreases AcLDL uptake via SR-A

 

Although AcLDL is a selective ligand for SR-A, mac-
rophages may express multiple scavenger receptor types

that bind AcLDL. Therefore, it is possible that the de-
creased AcLDL uptake after PTX treatment reflects an in-
hibition of one or more receptor types. To test this possi-
bility, AcLDL uptake was assessed in the absence or
presence of the selective SR-A antagonist, polyinosine
(25). As shown in 

 

Fig. 4

 

, polyinosine reduced AcLDL-
induced cholesteryl [

 

3

 

H]oleate deposition to basal levels,
indicating that AcLDL uptake by MPM is mediated by SR-
A. Similarly, incubations of macrophages isolated from
NIH-Swiss mice with the specific SR-A monoclonal anti-
body (2F8) reduced AcLDL uptake to 

 

<

 

5% of control
values (26). Given the extent to which SR-A mediates
AcLDL uptake in MPM, it appears that G

 

i/o

 

 specifically
regulates SR-A function in macrophages. Based on these
results, we conclude that SR-A-mediated activation of a G

 

i/o

 

protein enhances internalization of AcLDL, suggesting a
novel mechanism for regulating SR-A function.

 

PTX treatment does not alter SR-A expression

 

One possible explanation for the decreased uptake of
AcLDL after PTX treatment is decreased SR-A expression.
To assess this possibility, total cell lysates were prepared
from MPM treated with PTX and cellular protein resolved
by SDS-PAGE. SR-A was detected by immunoblotting
using a SR-A-specific polyclonal antisera (Mac5-2). As
shown in 

 

Fig. 5

 

, treatment of cells with PTX did not alter
the relative abundance of immunodetectable SR-A present
in MPM cell lysates. The amount of 

 

b

 

-actin present in
each cell extract was used to normalize the abundance of
SR-A. Thus, G

 

i/o

 

 inhibition decreases the uptake of AcLDL
by a mechanism that does not involve decreased expres-
sion of SR-A.

Fig. 3. PTX treatment decreases esterified cholesterol mass in
AcLDL, but not in b-VLDL-treated MPM. Total and unesterified
cellular cholesterol mass was determined in MPM that were un-
treated or treated with PTX (100 ng/ml) for 24 h prior to incuba-
tion with b-VLDL (10 mg/ml) or AcLDL (50 mg/ml) for 16 h. Cel-
lular unesterified and total cholesterol were determined by
enzymatic kits. Esterified cholesterol mass was determined by sub-
traction of the unesterified mass from the total mass. Histograms
and bars represent mean 6 SEM (n 5 3).

Fig. 4. Polyinosine inhibits the PTX-sensitive and insensitive
pathways of AcLDL uptake. Cholesterol esterification was deter-
mined in MPM that were incubated with the indicated concentra-
tion of polyinosine, a competitive antagonist for SR-A. AcLDL (50
mg/ml) and a [3H]oleic acid –albumin complex was added and
cells were incubated for 5 h. Cellular esterified cholesterol was iso-
lated by thin-layer chromatography and cholesteryl [3H]oleate was
quantified. The symbols represent the mean and the bars represent
the range of triplicate determinations from a representative experi-
ment (for some points the bars are smaller than the symbol).
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DISCUSSION

The finding that AcLDL, but not 

 

b

 

-VLDL, uptake by
macrophages is PTX sensitive indicates a specific associa-
tion between SR-A function and G

 

i/o

 

 proteins. Although
previously suggested that PTX-sensitive signaling pathways
are activated by modified lipoproteins, the functional sig-
nificance of activating these pathways on SR-A function
has not been addressed. Our results demonstrate that in-
hibiting these signaling pathways with PTX substantially
reduces the uptake of the scavenger receptor ligand
AcLDL. In contrast, PTX treatment did not affect the up-
take of 

 

b

 

-VLDL. In addition, polyinosine and the SR-A-
specific antibody 2F8 completely attenuated AcLDL up-
take, indicating that decreased AcLDL uptake after PTX
treatment resulted from the specific inhibition of SR-A. To-
gether, our data indicate that activation G

 

i/o is involved in a
feedback process that enhances SR-A-mediated uptake.

Cell-surface receptors that interact with heterotrimeric G
proteins generally have a characteristic seven-membrane
spanning topology. However, recent studies indicate that
other structurally diverse receptors can also interact with G
proteins. For example, the LDL receptor-related protein
(LRP) was recently shown to interact with and activate a G
protein (11). Likewise, the thrombospondin receptor
(CD47), a member of the IgG receptor superfamily, and
the glycosylphosphatidylinositol (GPI)-anchored glycopro-
teins CD14 and CD59 were shown to activate PTX-sensitive
G proteins (27–29). Like these receptors, the putative
structure of SR-A is very different from the characteristic
seven-membrane spanning topology of receptors that sig-
nal through Gi/o proteins. Nevertheless, our results indi-
cate that SR-A interacts with Gi/o and that Gi/o signaling
pathways are activated in response to SR-A ligand.

Although it is commonly thought that SR-A internalizes
lipoproteins via receptor-mediated endocytosis in clathrin-
coated pits, previous results suggest that AcLDL uptake in-
volves multiple processes. By assessing the rate of 125I-
labeled AcLDL internalization, Fong, Fong, and Cooper
(23) showed that uptake involved two kinetic processes:
the first with an apparent t1/2 ,4 min and the second with
a t1/2 .30 min. Consistent with these findings, Zha et al.
(24) demonstrated that macrophages internalize AcLDL

via two distinct pathways. One pathway is shared by the
LDL receptor and likely represents a classic clathrin-
coated pit endocytic process. The second pathway ac-
counted for .40% of the AcLDL uptake and was distinct
from that used by LDL. Uptake via this pathway involved
prolonged cell-surface localization of the AcLDL particle
within a region of membrane displaying microvilli-like
projections. While these authors did not exclude the pos-
sibility that the second pathway involved clathrin-coated
pits, they demonstrated that uptake via both pathways was
mediated by SR-A. Although it has yet to be determined
whether lipoprotein uptake by either of these uptake
pathways is PTX sensitive, our results demonstrating that
SR-A mediates AcLDL uptake by both Gi/o-dependent and
-independent pathways suggest such a possibility.

Internalization of cell surface receptors is largely depen-
dent on internalization signals contained within the cyto-
plasmic domain. Several sequences that regulate receptor
endocytosis have been identified including: a) tyrosine-
containing motifs with the consensus of YXXF, where F
represents a bulky hydrophobic residue (e.g., NPXY in the
LDL receptor (30), and YXRF in the transferrin receptor
(31, 32)); b) dileucine motifs (e.g., insulin receptor (33,
34), Glut4 transporter (35), and IgG Fc receptor (36)); c)
clusters of acidic amino acids (e.g., furin receptor (37, 38));
d) b-arrestin binding domains (e.g., G protein-coupled re-
ceptors)(39); and e) phosphorylation sites (e.g., G protein-
coupled receptors, tyrosine kinase receptors (38, 40–47)).
SR-A proteins, of which there are two splice variants
(Types I and II), are trimeric membrane proteins with
each monomer comprised of six (Type I) or five (Type II)
distinct domains. Each monomer of the SR-A protein has
a short (50 amino acid) amino-terminal cytoplasmic tail
(5, 48, 49). To date, an internalization motif has not been
identified in the cytoplasmic portion of SR-A and little is
known regarding the cytoplasmic signals that regulate
macrophage uptake of SR-A ligands.

The mechanisms by which Gi/o signaling pathways mod-
ulate SR-A-mediated lipoprotein uptake are not clear, but
may represent an important regulatory process in the up-
take of modified lipoprotein and in the development of
atherosclerosis. Based on our current understanding
of receptor endocytosis and G protein regulation of this
process, at least three possible explanations can be identi-
fied. First, Gi/o proteins may regulate the localization of
SR-A to the plasma membrane. Previous results have asso-
ciated the redistribution of SR-A from an intracellular
pool to the plasma membrane with an increase in the up-
take of modified lipoprotein (50). A second mechanism
that is consistent with our results is that interaction of
SR-A with a Gi/o protein enhances the ability of receptor
to bind ligand. A reduced ability of SR-A to bind AcLDL
was observed previously after treatment of macrophages
with the protein phosphatase inhibitor okadaic acid (51).
The reduced binding appeared to reflect receptor seques-
tration and/or inactivation, but did not result from a loss
of cell-surface receptors. Thus, our results would be con-
sistent with the notion that interaction of SR-A with Gi/o
regulates receptor sequestration/inactivation. Third, acti-

Fig. 5. Pertussis toxin treatment does not alter the relative abun-
dance of immunodetectable SR-A in MPM. Duplicate isolates of
MPM were incubated with or without pertussis PTX (100 ng/ml)
for 24 h. Cell protein was separated by 12% SDS-PAGE and proteins
were transferred to PVDF. Blots were probed sequentially with anti-
SR-A antisera and anti-b-actin antibody followed by incubation with
species-specific HRP-coupled secondary antibodies. Bands were de-
tected by chemiluminescence.
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vation of a signaling cascade by Gi/o proteins may regulate
the process of receptor-mediated endocytosis. The finding
that inhibition of intracellular protein kinases decreases
AcLDL internalization (51) is of particular interest be-
cause AcLDL reportedly increases protein kinase activity
through activation of a PTX-sensitive G protein (10, 12,
52). Thus, Gi/o-mediated activation of one or more protein
kinases might feedback to enhance SR-A internalization. In
summary, our results indicate that a feedback process in-
volving the ligand-dependent activation of a PTX-sensitive
G protein positively regulates SR-A-mediated lipoprotein
uptake.
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